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Abstract \\

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
has significantly burdened global public health. However, the tropism of SARS-CoV-2 within the human body remains not fully
understood. In this review, we overview the literature on SARS-CoV-2 infection across various human organs and tissues. We
summarize the relevant specimen types, techniques for examining SARS-CoV-2 tropism, and findings at both organ/tissue and
cellular levels. To systematically evaluate the evidence supporting SARS-CoV-2 tissue tropism, we establish a hierarchical classifi-
cation system based on two key criteria: (1) specimen origin and (2) detection methodology. Clinical specimens obtained directly
from COVID-19 patients provide the most definitive evidence, whereas organoid-derived specimens and animal models indicate
potential infectivity under artificial conditions. In terms of detection methods, we prioritize viral particle identification over viral
protein or RNA detection, as the latter requires further confirmation to establish productive infection. Our findings indicate that
SARS-CoV-2 potentially targets multiple human organ systems, including the respiratory tract, lungs, kidneys, heart, blood vessels,
pancreas, small intestine, liver, and salivary glands. By contrast, viral tropism for the central nervous system and the reproductive
system remains uncertain and requires further validation. At the cellular level, we identify specific target cell types vulnerable to
infection, including ciliated epithelial cells, alveolar type II pneumocytes, enterocytes, cardiomyocytes, vascular endothelial cells,
renal tubular epithelial cells, and pancreatic acinar cells. Furthermore, we analyze the correlation between angiotensin-converting
enzyme 2 receptor distribution patterns and viral tropism, as well as potential variations in tissue specificity among different viral
variants. We expect this review to provide a comprehensive landscape of SARS-CoV-2 tropism and enhance our understanding of
the life cycle and consequences of SARS-CoV-2 infection within the human body.
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1. Overview of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and
coronavirus disease 2019 (COVID-19)

SARS-CoV-2 is a member of the beta coronavirus family and is a
single-stranded, positive-sense RNA virus, sharing 79% genome
sequence identity with SARS-CoV, the causative agent of the
2003 outbreak.!"! The SARS-CoV-2 virion comprises four struc-
tural proteins: nucleocapsid (N), membrane (M), envelope (E),
and spike (S) proteins.””! In addition to these structural compo-
nents, the SARS-CoV-2 genome encodes various non-structural
and accessory proteins critical for completing the virus’s life
cycle within the host cell."
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The S protein of SARS-CoV-2 binds to the angiotensin-
converting enzyme 2 (ACE2) receptor on the surface of target
cells.’”! Following cleavage by transmembrane serine protease 2
(TMPRSS2), the S protein undergoes a conformational change
that facilitates viral membrane fusion and entry into the host
cell.') When TMPRSS2 expression is insufficient in target cells,
the virus can alternatively enter via the cleaved S protein through
cathepsin L (CTSL)."*”! Additionally, studies indicate that neu-
ropilin-1 (NRP1) and extracellular matrix metalloproteinase
inducer (EMMPRIN, also known as CD147) significantly
influence viral entry into host cells.™ The broad expression
of ACE2 receptors in human tissues allows SARS-CoV-2 to
initially infect the respiratory tract and subsequently spread to
other organ systems, causing widespread systemic infection.!"”

COVID-19, caused by SARS-CoV-2, is a highly infectious
disease with primary clinical symptoms including cough, fever,
fatigue, headache, and sore throat.""'*) Some patients may also
present with neurological and gastrointestinal symptoms, such
as loss of smell and taste, vomiting, and diarrhea.™?
cases, the disease can progress to acute respiratory distress syn-
drome (ARDS) and widespread multi-organ damage."""! Recent
studies have identified that some individuals, even after recovering
from the acute phase of COVID-19, experience persistent symp-
toms and complications. This condition is commonly referred to
as long COVID, Post-Acute Sequelae of SARS-CoV-2 infection
(PASC), or chronic COVID syndrome.'*"!
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2. Specimens and methods for detecting
SARS-CoV-2 tropism

2.1. Specimen types

The initial step in investigating the tropism of SARS-CoV-2
involves acquiring appropriate study specimens.!"®! In addition
to collecting specimens directly from individuals diagnosed with
COVID-19, recent technological advancements have enabled
researchers to culture organoid structures that replicate specific
organ functions and develop genetically modified animal models
(Figure 1). In this section, we provide a general overview and
summary of the concepts and functions of common specimens
used in SARS-CoV-2 tropism studies.

2.1.1. Autopsy specimens

Autopsy, also known as a postmortem examination, involves
the dissection, examination, and analysis of a deceased individual’s
body. The findings from an autopsy can reveal both patho-
logical and physiological changes, allowing scientists to better
understand the mechanisms and areas affected by disease develop-
ment,!718]

Autopsy plays a particularly critical role in understanding the
pathogenesis of emerging infectious diseases such as COVID-19,
especially in the early stages when limited information is available
about disease mechanisms and viral tissue tropism.!"”! Autopsy
specimens from individuals who died of COVID-19 serve
as the primary resources for identifying the tissue tropism of
SARS-CoV-2. These specimens can be analyzed using a range of
techniques, including histological analysis, immunohistochemis-
try, in situ hybridization, electron microscopy, and multi-omics
approaches, to investigate the distribution and abundance of the
virus in various organs and tissues.”*?! Such analyses offer a
multi-dimensional perspective of COVID-19 and contribute to
identifying distinct disease phenotypes. However, it is important
to note that autopsies are typically performed on patients who
succumbed to severe forms of COVID-19, and thus the findings
may not fully represent all cases.
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2.1.2. Biopsy specimens

Human tissues and cells derived from biopsies are crucial
specimens for studying the tropism of pathogens within specific
tissues and cells. These specimens are obtained through medical
imaging-guided biopsy procedures, including puncture or endos-
copy, which enable the extraction of specific tissues or cells
from patients. Biopsies collected from COVID-19 patients and
human ex vivo tissue cultures can provide valuable insights into
the cellular and molecular changes underlying the disease. Such
findings can aid in the development of effective treatments and
diagnostic methods. However, due to the challenges in obtain-
ing biopsies directly from COVID-19 patients, biopsies from
donated organs or precancerous tissues can serve as reliable
alternatives for research purposes.

2.1.3. Organoids

Organoid technology is an innovative biotechnological approach
in which stem cells derived from embryonic or adult tissues are
cultivated in a three-dimensional (3D) environment to recreate
structures that closely mimic the architecture and function of
specific organs or tissues.*>**! The pluripotent differentiation
potential of stem cells, combined with advancements in i vitro
culture techniques, has enabled organoids to exhibit self-or-
ganization and self-renewal capabilities.”*! Two principal types
of 3D-cultured organoid systems have been developed: those
derived from human pluripotent stem cells and those generated
from adult tissues.”” Organoid technology has emerged as a
vital research tool in translational medicine, cancer biology,
and drug development. These models effectively replicate the
pathophysiology of organs in disease states and were widely
utilized in viral pathogenicity studies before the COVID-19 pan-
demic.*! During the pandemic, organoid technology provided
valuable research specimens and insights, helping to address many
scientific challenges posed by SARS-CoV-2.*”) Nevertheless, it
is important to acknowledge the limitations of organoid studies
and interpret their results with caution.

Different specimen types for detecting tropism of SARS-CoV-2

?%T{E:_%—SARS-COV-z

[

Autopsy specimens

2

l

Human biopsy
tissues or cells

°
®
o

°
°
°

°

oo

i

Organoid specimens

& '_“‘\ T Lo

I —a-.—
hACE2 /0y

b _/ g \\‘

l I

Animal models

.

Figure 1: Various types of specimens are used to study the tissue tropism of SARS-CoV-2. The figure was created with Biorender.com. We classify
our specimens into four categories: (1) postmortem specimens; (2) human biopsy specimens; (3) organoid model specimens; and (4) animal model
specimens. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; hACE2: human angiotensin-converting enzyme 2.
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2.1.4. Animal models

Animal models are experimental systems that utilize non-human
species, such as rats or monkeys, to replicate the occurrence and
progression of human diseases or specific biological processes.
These models are widely used to assess the efficacy of vaccines
and therapeutic drugs.”® Due to their advantages—including
short experimental durations, relatively low costs, and easy
accessibility—animal models have become invaluable tools in
investigating major human diseases.”®! They have been instru-
mental in the development of vaccines and therapeutics for
SARS-CoV-2.2%3% A diverse range of animal models has been
used in SARS-CoV-2 research, including non-human primates
(NHPs), genetically engineered mice, humanized mouse models,
as well as Syrian hamsters, ferrets, poultry, and domestic
animals.*®*!" While these models are designed to simulate
virus-host interactions in humans, it is essential to acknowledge
the inherent differences between species, which can introduce
biases.

2.2. Methods for SARS-CoV-2 tropism research

Diverse techniques can be employed to detect the presence of
SARS-CoV-2 in specific tissues, as detailed below (Figure 2).
The presence of viral particles in specific specimens provides the
strongest evidence of SARS-CoV-2’s ability to infect the tissue.
Detecting viral proteins suggests potential viral activity, while the
detection of viral subgenomic RNA alone offers weaker evidence
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of viral replication within the tissue. Therefore, we recommend
that readers consider both the specimen sources and assay methods
used in other studies when evaluating SARS-CoV-2 tropism.

2.2.1. Detection of viral particles or infectious virus

Transmission electron microscopy (TEM) is an imaging tech-
nique that enables direct visualization of viral particles in tissues
at the nanoscale level, making it a valuable tool for detecting
SARS-CoV-2 infection.?” However, the technique have sig-
nificant limitations, including high costs, time-consuming
procedures, and strict requirements for specimen preservation.
Furthermore, accurately identifying viral particles at the subcel-
lular level can be technically challenging and demands a high
level of operator expertise.**!

An alternative method for detecting infectious viral particles
involves virus isolation and quantification. Techniques such
as plaque assays and the 50% tissue culture infectious dose
(TCIDj,) assay are particularly effective when applied to fresh
tissues or cultured cells.® The detection of live virus within
a specific tissue or cell type offers compelling confirmation of
viral tropism. Although virus isolation technology can precisely
identify the presence and quantity of infectious virus, they are
labor-intensive and reliant on high-quality samples, limiting
their practicality for large-scale or multi-sample studies. Moreover,
working with infectious virus requires access to high-level
biosafety laboratories and strict specimen quality control to
ensure the virus remains active throughout the testing process.**!

Methods for SARS-CoV-2 tropism research
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Figure 2: Strategies for detecting the tissue tropism of SARS-CoV-2 can be categorized based on the type of detection into intact viral particles, viral
proteins, and viral RNA. This figure is created in https://BioRender.com. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; RT-gPCR:
reverse transcription quantitative polymerase chain reaction; ddPCR: droplet digital polymerase chain reaction; TCIDs,: 50% tissue culture infectious

dose.
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2.2.2. Detection of viral proteins

Immunohistochemistry is a technique that employs antigen—anti-
body interactions to detect the expression of specific proteins
in tissues or cells.”” This method is commonly applied to for-
malin-fixed paraffin-embedded tissues, which are easily stored
and widely used across various biomedical research fields."*®!
Immunofluorescence, a complementary technique, employs
fluorescently labeled antibodies as molecular probes to detect
target proteins in tissues.””! By using multiple specific antibodies,
immunofluorescence enables the simultaneous detection of
several markers within a single tissue section. Visualization of
the target proteins is achieved through laser scanning confocal
microscopy, which provides high-resolution images of labeled
proteins.*®3? Both immunohistochemistry and immunofluores-
cence techniques are applicable to various types of specimens
and can detect the presence of viral proteins in tissues (such as
the SARS-CoV-2 N or S proteins) as a signal of viral infection
in the tissue.***!" However, the detection of viral proteins does
not confirm effective infection, as it could result from abortive
infections or contamination under specific scenarios.!*!

2.2.3. Detection of viral RNA

Reverse transcription quantitative real-time PCR (RT-qPCR) is a
highly sensitive and specific technique that was widely employed
during the early stages of the COVID-19 pandemic to detect
SARS-CoV-2 RNA in patient specimens, such as nasopharyngeal
swabs, saliva, and bronchoalveolar lavage fluid."¥ This method
is also capable of detecting viral RNA in specific tissues or cells,
aiding in identifying the virus’s tissue tropism and potential
target organs. Another prominent detection method is digital
droplet PCR (ddPCR), which uses water-in-oil emulsions to par-
tition background DNA or RNA into thousands of individual
droplets."**! Technologies for quantifying viral nucleic acids,
such as RT-qPCR and ddPCR, have demonstrated substantial
potential for SARS-CoV-2 detection and represent promising
diagnostic tools for the identification and surveillance of various
infectious diseases./*¢*”)

RNA in situ hybridization (RNA ISH) and RNAscope tech-
nologies are robust tools for visualizing and localizing RNA in
specific tissues.*®*! These techniques use molecular probes that
bind to specific RNA sequences in fixed, permeabilized tissues
or cells. After hybridization, the RNA-probe complex emits a
fluorescent signal, enabling optical microscopy to detect the
target RNA’s presence and location.*® Unlike PCR-based RNA
detection methods, RNA ISH and RNAscope provide the added
benefit of in situ tissue analysis, offering spatial context for
RNA expression.l’!!

However, the detection of viral RNA in specific tissues or
cells does not necessarily confirm that the virus can complete
processes such as genome replication, transcription, translation,
virion assembly, and release within those tissues or cells. Positive
viral RNA signals may result from abortive viral infections or
specimen contamination. Probes targeting the negative-strand
viral genome RNA are recommended to improve reliability,
and combining RNA ISH or RNAscope with other detection
technologies can help minimize false-positive results.

2.2.4. High-throughput sequencing-based methods

High-throughput sequencing and its derivative technologies ena-
ble rapid and efficient large-scale sequencing of DNA or RNA
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samples within a short timeframe.** Compared to bulk sequenc-

ing, single-cell sequencing and spatial single-cell sequencing
provide single-cell and spatial resolution, respectively, offering
unprecedented insights and broader perspectives.'**! By aligning
sequencing data from specific tissues or cells to the SARS-CoV-2
reference genome, researchers can quantify viral RNA read
counts to confirm its presence in a specimen.**!

3. Tissue and cell tropism of SARS-CoV-2

Substantial evidence indicates that SARS-CoV-2 exhibits tro-
pism for multiple organs and cell types.”>* In addition to the
respiratory tract, vital organs such as the stomach, heart, and
kidneys are at risk of viral infection. This study evaluates the
susceptibility of various tissues to SARS-CoV-2 infection at both
the tissue and cellular levels; the findings emphasize the necessity
of robust evidence to confirm viral tissue tropism (Figure 3;
Figure 4; Supplementary Table S1, http:/links.lww.com/IDI/A62).
Based on current evidence, we categorize SARS-CoV-2 target tis-
sues or cells into three tiers: definitive infection (supported by >2
concordant studies demonstrating intact viral particles), proba-
ble infection (consistent detection of viral proteins without viral
particles across studies), and unconfirmed infection (limited to
viral RNA detection or where evidence remains contradictory).

3.1. Respiratory system

The respiratory system, comprising the trachea, airways,
and distal alveoli, serves as the primary site for gas exchange
between the internal and external environments.”! It is a
critical component of the human respiratory system, which is
divided into the upper and lower respiratory tracts. The internal

Tissue tropism of SARS-CoV-2

Figure 3: Overview of the tissue tropism of SARS-CoV-2 for various tis-
sues. Definitive infection (v): viral particles or live virus have been detected
in tissues from at least 2 studies without contradictory evidence. Probable
infection (*): viral proteins have been detected in tissues from COVID-19
patients’ specimens. Unconfirmed infection (?): Only viral RNA has been
detected in tissues, or there is a lack of evidence regarding whether the
virus can infect that tissue. This figure is created in https://BioRender.
com. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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Figure 4: Overview of the tropism of SARS-CoV-2 for various cells. (A-l) Cell tropism of SARS-CoV-2 for different systems or tissues. Definitive infection
()): viral particles or live virus have been detected in cells from at least 2 studies without contradictory evidence. Probable infection (*): viral proteins
have been detected in cells from COVID-19 patients’ specimens. Unconfirmed infection (?): Only viral RNA has been detected in cells, or there is a lack
of evidence regarding whether the virus can infect that tissue. This figure is created in https://BioRender.com.

microenvironment of the respiratory tract is highly complex,
containing various specialized cell types, such as ciliated cells,
macrophages, and endothelial cells. These cells are essential for
maintaining normal respiratory function, clearing foreign parti-
cles, and defending against pathogenic infections.””®’

SARS-CoV-2 primarily targets the respiratory system, leading
to clinical symptoms such as coughing and difficulty breathing.
In severe cases, infection can progress to pneumonia or respira-
tory failure.""! ACE2 is widely expressed across various cell
types in the trachea, airways, and alveoli.”””"! This expression
pattern underscores the broad potential for SARS-CoV-2 infec-
tion in the respiratory tract.

Research based on autopsies and organoid models has shown
that the respiratory tract, including the trachea, airways, and
lungs, is the primary target of SARS-CoV-2 infection. Ciliated
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cells and type II alveolar cells (AT2 cells) are the main target
cells.®?I The detection of viral particles in these tissues and
cells suggests that the virus can replicate and spread extensively
within the respiratory system.®>%%%1 Additionally, other cell
types, including secretory cells, squamous cells, goblet cells,
basal cells in the upper airways, and alveolar macrophages in
the lungs, may also become infected.®3! This is supported by
the presence of viral proteins and subgenomic RNA in these
cells, as observed in studies using autopsy and human-derived
specimens.*33? While goblet cells (also known as club cells)
have the potential to be infected by SARS-CoV-2, infections in
these cells are rarely observed. This is likely due to the absence
of viral replication components in goblet cells, which highlights
the virus’s preferential cell tropism.””! Single-cell sequenc-
ing data from samples such as nasopharyngeal swabs and
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bronchoalveolar lavage fluid from COVID-19 patients further
confirm that SARS-CoV-2 can infect ciliated cells, goblet cells,
basal cells, and squamous cells.****?" Collectively, these studies
demonstrate that SARS-CoV-2 exhibits a broad tropism for the
respiratory system, which serves as the primary gateway for
viral invasion and dissemination in the body.

3.2. Digestive system

The human digestive system comprises the digestive tract
and digestive glands. Some individuals infected with SARS-
CoV-2 may present with gastrointestinal symptoms, including
anorexia, diarrhea, vomiting, and abdominal pain.”® Addi-
tionally, viral RNA has been detected in the feces of certain
patients, suggesting the potential for fecal-oral transmission of
SARS-CoV-2.""1%U nterestingly, the expression levels of ACE2
in intestinal tissues are higher than those in the respiratory
tract.l’7-10%

Numerous studies have confirmed the tropism of SARS-
CoV-2 for the digestive system. The presence of SARS-CoV-2
viral particles and proteins in human tissue specimens and
intestinal organoid models derived from COVID-19 patients
has been documented.'?%193-19! Eyrthermore, infectious viral
particles have been successfully isolated from the feces of some
patients.'*”! Enterocytes have been identified as the primary
target cells in the gastrointestinal tract, with multiple studies
reporting the presence of viral particles or proteins in these
cells, [100-101,103,104,107-109 N 1 regver, Giobbe et al. reported that
gastric cells in human gastric organoid models can be infected
by SARS-CoV-2, although in vivo evidence is lacking.""®! Ani-
mal model studies conducted by Jiao et al. corroborated the
findings from human findings, identifying infection in the
digestive tract and detecting viral particles and RNA in a
primate model.!"'”! Investigations into bat organs have further
revealed that SARS-CoV-2 can infect the intestinal tissues of
bats.""”] Notably, bat intestinal tissues exhibit higher baseline
expression of antiviral genes compared to human intestinal
tissues, facilitating a faster and more robust innate immune
response. This may contribute to the asymptomatic carrier
state of the virus in bats.!"'"!

The liver, a vital digestive and endocrine organ, plays a cen-
tral role in numerous physiological processes and is essential
for maintaining homeostasis."'?! Liver injury is a common
complication during SARS-CoV-2 infection, typically indicated
by elevated levels of aspartate aminotransferase and gamma-
glutamyl transferase.!'" These findings suggest that the liver can
be directly affected by SARS-CoV-2 infection. Autopsy findings
from COVID-19 patients have consistently shown the presence
of viral particles, proteins, or RNA in liver tissues, supporting
the liver’s susceptibility to SARS-CoV-2.40?3 1141171 [ iver orga-
noid studies have further confirmed the presence of SARS-CoV-2
viral particles in infected human liver organoids, reinforcing the
notion that the liver is a target organ for the virus.!""® Hepato-
cytes, Kupffer cells, and endothelial cells have been identified as
potential targets of SARS-CoV-2 infection. Several studies have
provided compelling evidence of viral proteins in hepatocytes
and Kupffer cells, underscoring their vulnerability.*®1*1151 Agia-
loglycoprotein receptor 1 has been identified as a key receptor
for mediating viral entry into hepatocytes.'"! The detection
of viral proteins in liver endothelial cells further supports their
involvement in the infection process. "]
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Autopsy studies and investigations using human salivary gland
organoids have also provided evidence of SARS-CoV-2 infection
in the salivary glands. This includes the detection of infectious
viral particles, viral proteins, and viral RNA.'?71231 Acinar
cells have been identified as the primary targets within salivary
glands infected by SARS-CoV-2.1121]

3.3. Central nervous system

During SARS-CoV-2 infection, patients may experience a
range of neurological symptoms, including reduced sense of
smell and taste, dizziness, headaches, altered consciousness,
and ataxia.l"*"! In severe cases, concurrent neurodegeneration,
cerebral edema, and even encephalitis have been observed. The
detection of SARS-CoV-2 in cerebrospinal fluid and brain tissue
specimens from certain individuals suggests the potential for
viral invasion of the nervous system.!''®'*! Traditionally con-
sidered immune-privileged, the central nervous system (CNS)
has now been shown to exhibit immune activity.!'**! The CNS
is protected by several physical barriers, including the meninges,
the interface between the nasal epithelium and the olfactory
bulb, the blood-cerebrospinal fluid barrier (BCSFB), and the
blood-brain barrier (BBB).'*”) These structures, together with
resident immune cells, play a crucial role in preventing pathogen
invasion.

Bauer et al. proposed a concise definition of neuroinvasiveness,
referring to the ability of a virus to breach these physical barriers
and access specific neural tissues or organs.!'**! This concept is
essential for evaluating whether SARS-CoV-2 can be classified as
a neurotropic virus. One study demonstrated that non-infectious
SARS-CoV-2 models were able to breach the blood-brain barrier
in mouse models, leading to CNS involvement.!"*”! Research
using human brain organoid and mouse models has further
revealed viral infection in brain capillary endothelial-like cells,
supporting the notion that SARS-CoV-2 has the ability to cross
physical barriers.!">*"*!) Another potential pathway for SARS-
CoV-2 entry into the CNS is through the respiratory tract, with
possible infection of the olfactory bulb tissue."?®! While Khan
et al. reported not infection of the olfactory bulb tissue, their
findings did confirm viral infection in supporting cells of the
olfactory epithelium.”® This suggests that the virus may not
traverse the olfactory epithelium to enter the CNS. By contrast,
several studies have demonstrated SARS-CoV-2 infection in
the olfactory bulb, indicating that the olfactory nerve could
serve as a potential route for viral invasion into the nervous
system.[132-134]

Studies utilizing human brain organoids provide com-
pelling evidence of SARS-CoV-2 infectivity in CNS tissues
and cells following viral entry.'**'*! In both organoid and
animal models, viral particles, proteins, and RNA have been
detected in neurons, astrocytes, and choroid plexus epithelial
cells,133:135-137.139-142,144] A (ditional findings show viral RNA
or proteins in glial cells, microglia, and neural progenitor
cellg [13313B3BII9IR] ACED expression in neurons, astrocytes,
and choroid plexus epithelial cells provides a molecular basis
for SARS-CoV-2 infection in these cell types.'*'* Postmor-
tem studies of COVID-19 patients have revealed SARS-CoV-2
RNA in brain tissue, including the optic and olfactory nerves
and the choroid plexus.P>!®17- 150 However, viral proteins
were rarely detected,'**"*'"5%1 and only one study provided
evidence of SARS-CoV-2 viral particle detection.!''*! In line with
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organoid findings, astrocytes and neurons were also found to
be infected in autopsy specimens.!"'>'!! Interestingly, several
studies have reported infection of cerebral blood vessels and vas-
cular endothelial cells in the brain, with viral RNA or proteins
detected in these cell types,!!!5148:154153]

Overall, CNS infection by SARS-CoV-2 appears to be an
opportunistic event. Although the virus shows the potential
to breach physical barriers and invade neural tissues, findings
across studies have been inconsistent, suggesting that such events
may be relatively rare.”®**%8] Moreover, the detection of viral
RNA in brain specimens alone is insufficient to confirm CNS
infection. It is possible that systemic inflammation associated with
COVID-19 compromises the integrity of the BBB or BCSFB,
allowing viral RNA to enter the CNS without direct infection
of neural tissues.!"*”!

3.4. Cardiovascular system

The cardiovascular system, comprising the heart and blood
vessels, is recognized as a potential target for SARS-CoV-2
infection. COVID-19-associated symptoms such as arrhythmias
and acute myocardial injury have been linked to poorer prog-
noses in affected individuals.""®”! The heart, a complex organ
with four chambers, is composed of diverse cell types, including
cardiomyocytes, fibroblasts, endothelial cells, pericytes, smooth
muscle cells, immune cells, adipocytes, and neural cells.!"!!
The high expression of ACE2 in cardiac tissue suggests that
the heart is particularly susceptible to SARS-CoV-2, identifying
it as a potential target organ.'®® Viral particles, proteins, and
RNA have been detected in the hearts of COVID-19 patients
through autopsies and tissue specimens, 407273 115:117,147,163-163]
These findings are further substantiated by studies using human
heart organoid models and animal models, which confirm that
the heart can indeed be infected by SARS-CoV-2.1"¢"1l Among
the cardiac cell types, cardiomyocytes have been identified as
potential target cells for viral infection. Several studies have
reported the presence of viral particles or proteins within cardi-
omyocytes,113:163:164166-168,170-1721 ¢ we| as in pericytes, where
viral proteins have also been detected.!"”"'”*! These observations
suggest that SARS-CoV-2 can directly infect and damage specific
cell types in the heart.

Endothelial cells, which form the inner lining of blood vessels,
are essential to cardiovascular function and have been identified
as significant targets for SARS-CoV-2 infection.!"”*'7®) Multiple
studies have confirmed the virus’s ability to infect blood ves-
sels.'”#177I Recent research indicates that SARS-CoV-2 infection
of endothelial cells triggers inflammatory responses, a process
that plays a key role in the pathogenesis of COVID-19.[#1:163]

Given the virus’s pronounced tropism for endothelial cells,
it is plausible that such cells across various organs may also
become infected. This widespread endothelial involvement may
contribute to multi-organ complications beyond the cardiovas-
cular system. The infection of endothelial cells underscores the
systemic nature of SARS-CoV-2 and highlights the importance
of further research into its role in organ-specific complications.

In conclusion, strong evidence supports SARS-CoV-2’s
tropism for the human cardiovascular system. Recognizing the
complex relationship between COVID-19 and cardiovascular
health can help healthcare professionals develop more targeted
interventions and treatment strategies. Ultimately, such insights
are crucial for improving patient outcomes and mitigating the
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virus’s impact on cardiovascular function during and beyond
the course of the pandemic.

3.5. Urinary system

The urinary system, comprising the kidneys, bladder, and ureters,
plays a central role in urine production and excretion. Among
patients with COVID-19, acute kidney injury has emerged as a
common complication, highlighting the susceptibility of the kid-
neys to SARS-CoV-2 infection and its associated damage.!'”817)
The high expression of ACE2 in renal tissue further supports
this vulnerability.!8"!

Evidence from autopsies, biopsies, and organoid models has
confirmed the presence of viral particles, proteins, or RNA in
kidneys affected by SARS-CoV-2, 4023115710188 Ny rapy,
Sun et al. isolated infectious viral particles from the urine of
COVID-19 patients, raising the possibility of SARS-CoV-2
transmission via urine."®¥! Interestingly, a diabetic environment
appears to exacerbate the kidney’s susceptibility to SARS-CoV-2,
possibly due to altered energy metabolism and increased ACE2
expression.!"** However, evidence regarding viral infection in the
ureter and bladder remains limited. In most cases, renal tubular
epithelial cells within the renal parenchyma are identified as the
primary targets of viral infection.”>1>1857187 1n addition, viral
RNA or proteins have been detected in other renal cell types,
such as renal cells and podocytes."® In conclusion, a growing
body of research supports the tropism of SARS-CoV-2 for the
kidneys, with viral infection potentially contributing to renal
fibrosis and severe kidney injury.!"*"!

3.6. Reproductive system

Our current understanding of SARS-CoV-2 infection in repro-
ductive organs and its clinical implications remains limited.
Few COVID-19 patients have reported symptoms related to
the reproductive system.!"*¥! While ACE2 expression has been
observed in the testes, ovaries, uterus, and vagina, it is not signifi-
cantly expressed in the female reproductive system.8%1%%!

Evidence suggests the possibility of SARS-CoV-2 invasion of
reproductive tissues. Yao et al. reported the presence of viral
RNA and proteins in the blood-testis barrier (BTB) in autopsy
specimens from COVID-19 patients.”!! Two additional studies
identified viral particles in the testes, with spermatogonial
cells as the potential targets of infection.!”'*!) Other studies
have detected viral RNA or proteins in the testes, ovaries,
and uterus.”"?>"""1 Lj et al. demonstrated that SARS-CoV-2
infection in hamsters led to acute testicular damage, although
this damage was prevented by vaccination.!"””! Peirouvi et al.
provided evidence that SARS-CoV-2 can impair BTB function
by reducing the expression of junctional proteins and increas-
ing the expression of inflammatory factors."*¥ This disruption
may facilitate viral entry into the testis via the vasculature.
While these findings support the potential for SARS-CoV-2
infection in reproductive organs, such infection appears to be a
relatively rare clinical event rather than a typical manifestation
of COVID-19.

The possibility of vertical transmission from mother to fetus
remains uncertain. Limited and often conflicting evidence has led
to ongoing debate."***8 Current research does not conclusively
support SARS-CoV-2 infection of the placenta,!'2176198199 Eyyp.
ther investigation is needed to assess the tropism of SARS-CoV-2
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for reproductive tissues and to inform appropriate clinical treat-
ment strategies.

3.7. Endocrine system

The organs of the endocrine system regulate various physio-
logical functions, primarily through hormone secretion. Several
endocrine organs—including the pancreas, salivary glands,
thyroid, and thymus—are considered potential targets for SARS-
CoV-2 infection.!"**%! Research has shown the presence of viral
particles, proteins, or RNA in the pancreas.!'*820122%4 A notably
high frequency of infection has been observed in various pan-
creatic cell types, including islet alpha cells, beta cells, and other
endocrine cells.?*'%) COVID-19 has also been associated with
thyroid dysfunction. Studies by Poma et al. and Macedo et al.
analyzed thyroid specimens from deceased COVID-19 patients
and reported direct infection of the thyroid by SARS-CoV-2,
with viral RNA localized in thyroid tissue.*****"l Similarly,
Rosichini et al. demonstrated infection of human primary
thymic epithelial cells, suggesting that the thyroid and thymus
may be targeted by SARS-CoV-2.12%! Despite these findings, the
infection of endocrine organs by SARS-CoV-2 appears to be
relatively rare.

3.8. Inmune system

The potential for SARS-CoV-2 to infect immune cells and inter-
fere with normal immune function remains a compelling area
of investigation. As the respiratory system is the virus’s primary
point of entry, immune cells located within respiratory tissues
are at risk of infection. Using single-cell sequencing, Ren et al.
and Ziegler et al. identified viral RNA in various immune cell
types, such as T cells, B cells, NK cells, macrophages, neutrophils,
and plasma cells.***” Further, multiple studies have confirmed
the presence of viral antigens in alveolar macrophages, further
supporting the idea that immune cells in the respiratory tract
can be directly targeted by SARS-CoV-2,[80:-71:115,120.209]

The spleen and lymph nodes, as peripheral lymphoid
organs, are key sites for immune responses and are primary
reservoirs for immune cells. SARS-CoV-2 infection of these
organs has been demonstrated, with viral RNA or antigens
detected in both tissues.**?*?>11718 Certain immune cells
within the spleen and lymph nodes also appear susceptible to
infection.*®*13 These observations, derived from postmor-
tem analyses, suggest that such infections are more common in
severe cases of COVID-19.

Recent findings have also indicated the potential for SARS-
CoV-2 to infect circulating lymphocytes in the blood, including
monocyte macrophages, T cells, and B cells. Several studies
have reported the presence of viral RNA or antigens in these
cell types.*'%?"" Notably, a study by Shen et al. identified infec-
tious virus within T cells isolated from the peripheral blood of
COVID-19 patients.”'?! These findings suggest that circulating
immune cells can be directly infected by SARS-CoV-2, highlight-
ing the virus’s potential to interfere with immune function and
contribute to disease severity.

3.9. Other tissues and organs

SARS-CoV-2 has demonstrated the ability to infect various
tissues and organs beyond the respiratory system, including
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adipose tissue and the eye. Several studies have shown that the
virus can invade adipose cells, with evidence of viral particles
or RNA detected in adipose tissue specimens.*'*!3! Addition-
ally, the virus has been detected in the eye, particularly in the
cornea, retina, and vitreous body.*'***! These findings raise
the possibility that ocular routes may facilitate viral transmis-
sion. However, some studies have reported negative results for
SARS-CoV-2 infection in the cornea,?**?*! suggesting that such
infections are rare, and the likelihood of viral transmission
through corneal transplants from deceased COVID-19 patients
remains very low.

3.10. ACE2 and SARS-CoV-2 tropism

The ACE2 receptor serves as the decisive and indispensable
factor mediating SARS-CoV-2 entry into host cells.?****51 Ag
a result, ACE2 expression levels in specific tissues or cells are
strongly associated with viral tropism.??®! Successful viral
invasion and replication typically require two essential steps:
(1) Access of the virus to the target tissue through specific
mechanisms, and (2) sufficient expression of viral receptors—
particularly ACE2—within the target tissue. Multiple studies
have systematically analyzed ACE2 expression profiles across
various human tissues and cell types. Significant ACE2 expres-
sion has been identified in the intestinal epithelium, renal
tubules, gallbladder, myocardium, testicular tissue, placenta,
vascular endothelium, and hepatocytes,””! with especially high
levels observed in the small intestine, testes, kidneys, heart,
thyroid, and adipose tissues.!"*”! These findings align with our
investigation, as most of these tissues have been confirmed as
targets for SARS-CoV-2 infection. Furthermore, a meta-anal-
ysis found that ACE2 levels were elevated in the respiratory
epithelial cells of current and former smokers compared to non-
smokers.??”'Subsequent studies have corroborated that this ACE2
upregulation enhances host cell susceptibility to SARS-CoV-2
infection.*®!

4. SARS-CoV-2 variants and tropism

Since the onset of the pandemic, the continual emergence of
SARS-CoV-2 variants has posed an ongoing challenge for global
health organizations. To date, the World Health Organization
(WHO) has designated five Variants of Concern (VOCs): Alpha
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and
Omicron (B.1.1.529).22*2% Although the pandemic has been
officially declared over, descendant lineages such as XBB, JN.1,
and XEC continue to circulate in certain regions.”*!! Emerging
research indicates that JN.1, KP.3.1.1, and XEC variants possess
enhanced abilities to evade humoral immunity and escape from
receptor-binding domain-targeting antibodies.**"**?) However,
further investigation is needed to determine whether these vari-
ants exhibit altered host tropism.

Current evidence suggests that SARS-CoV-2 evolution has
influenced viral tropism, with Omicron variants exhibiting
reduced pulmonary tropism compared to ancestral strains and
earlier variants such as Alpha and Delta.”**! This phenotypic
shift appears to be associated with two key factors: (1) Omi-
cron exhibits reduced replication efficiency in pulmonary cells
compared to earlier variants,”**** and (2) The virus exhibits
prolonged persistence in nasal and sinus mucosal tissues, which
may limit its penetration into the lower airways and reduce the
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risk of pulmonary inflammation.”**! A German autopsy study

reported significantly higher nasal viral loads in Omicron cases
compared to non-VOC lineages. However, no significant differences
in viral loads were observed among different variants in other
organs, including the lungs, blood, heart, liver, kidneys, and
brain.”*”! Currently, limited data are available regarding the tro-
pism of different variants for non-respiratory tissues and organs.
More comprehensive studies are required to fully characterize
the tissue-specific tropism of various SARS-CoV-2 variants.

5. Conclusion

COVID-19, caused by SARS-CoV-2, continues to represent a
major global health concern. With its potential for multi-organ
involvement, the disease poses increased risks to vulnerable
populations, particularly those with pre-existing conditions.
This situation underscores the urgent need for the development
of more effective vaccines and therapeutic strategies, especially
in light of going emergence of new variants. Although the res-
piratory system is the primary target for the virus, SARS-CoV-2
exhibits a complex tropism affecting various tissue and cell
types throughout the human body. Further research is essential
to deepen our understanding of the specific mechanisms under-
lying the multisystem effects of SARS-CoV-2.
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