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Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
has significantly burdened global public health. However, the tropism of SARS-CoV-2 within the human body remains not fully 
understood. In this review, we overview the literature on SARS-CoV-2 infection across various human organs and tissues. We 
summarize the relevant specimen types, techniques for examining SARS-CoV-2 tropism, and findings at both organ/tissue and 
cellular levels. To systematically evaluate the evidence supporting SARS-CoV-2 tissue tropism, we establish a hierarchical classifi-
cation system based on two key criteria: (1) specimen origin and (2) detection methodology. Clinical specimens obtained directly 
from COVID-19 patients provide the most definitive evidence, whereas organoid-derived specimens and animal models indicate 
potential infectivity under artificial conditions. In terms of detection methods, we prioritize viral particle identification over viral 
protein or RNA detection, as the latter requires further confirmation to establish productive infection. Our findings indicate that 
SARS-CoV-2 potentially targets multiple human organ systems, including the respiratory tract, lungs, kidneys, heart, blood vessels, 
pancreas, small intestine, liver, and salivary glands. By contrast, viral tropism for the central nervous system and the reproductive 
system remains uncertain and requires further validation. At the cellular level, we identify specific target cell types vulnerable to 
infection, including ciliated epithelial cells, alveolar type II pneumocytes, enterocytes, cardiomyocytes, vascular endothelial cells, 
renal tubular epithelial cells, and pancreatic acinar cells. Furthermore, we analyze the correlation between angiotensin-converting 
enzyme 2 receptor distribution patterns and viral tropism, as well as potential variations in tissue specificity among different viral 
variants. We expect this review to provide a comprehensive landscape of SARS-CoV-2 tropism and enhance our understanding of 
the life cycle and consequences of SARS-CoV-2 infection within the human body.
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1. Overview of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and 
coronavirus disease 2019 (COVID-19)
SARS-CoV-2 is a member of the beta coronavirus family and is a 
single-stranded, positive-sense RNA virus, sharing 79% genome 
sequence identity with SARS-CoV, the causative agent of the 
2003 outbreak.[1] The SARS-CoV-2 virion comprises four struc-
tural proteins: nucleocapsid (N), membrane (M), envelope (E), 
and spike (S) proteins.[2] In addition to these structural compo-
nents, the SARS-CoV-2 genome encodes various non-structural 
and accessory proteins critical for completing the virus’s life 
cycle within the host cell.[3,4]

The S protein of SARS-CoV-2 binds to the angiotensin- 
converting enzyme 2 (ACE2) receptor on the surface of target 
cells.[5] Following cleavage by transmembrane serine protease 2 
(TMPRSS2), the S protein undergoes a conformational change 
that facilitates viral membrane fusion and entry into the host 
cell.[6] When TMPRSS2 expression is insufficient in target cells, 
the virus can alternatively enter via the cleaved S protein through 
cathepsin L (CTSL).[6,7] Additionally, studies indicate that neu-
ropilin-1 (NRP1) and extracellular matrix metalloproteinase  
inducer (EMMPRIN, also known as CD147) significantly 
influence viral entry into host cells.[8,9] The broad expression 
of ACE2 receptors in human tissues allows SARS-CoV-2 to 
initially infect the respiratory tract and subsequently spread to 
other organ systems, causing widespread systemic infection.[10]

COVID-19, caused by SARS-CoV-2, is a highly infectious 
disease with primary clinical symptoms including cough, fever, 
fatigue, headache, and sore throat.[11,12] Some patients may also 
present with neurological and gastrointestinal symptoms, such 
as loss of smell and taste, vomiting, and diarrhea.[13] In severe 
cases, the disease can progress to acute respiratory distress syn-
drome (ARDS) and widespread multi-organ damage.[11] Recent 
studies have identified that some individuals, even after recovering 
from the acute phase of COVID-19, experience persistent symp-
toms and complications. This condition is commonly referred to 
as long COVID, Post-Acute Sequelae of SARS-CoV-2 infection 
(PASC), or chronic COVID syndrome.[14,15]
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2. Specimens and methods for detecting 
SARS-CoV-2 tropism

2.1. Specimen types
The initial step in investigating the tropism of SARS-CoV-2 
involves acquiring appropriate study specimens.[16] In addition 
to collecting specimens directly from individuals diagnosed with 
COVID-19, recent technological advancements have enabled 
researchers to culture organoid structures that replicate specific 
organ functions and develop genetically modified animal models 
(Figure 1). In this section, we provide a general overview and 
summary of the concepts and functions of common specimens 
used in SARS-CoV-2 tropism studies.

2.1.1. Autopsy specimens

Autopsy, also known as a postmortem examination, involves 
the dissection, examination, and analysis of a deceased individual’s 
body. The findings from an autopsy can reveal both patho-
logical and physiological changes, allowing scientists to better 
understand the mechanisms and areas affected by disease develop-
ment.[17,18]

Autopsy plays a particularly critical role in understanding the 
pathogenesis of emerging infectious diseases such as COVID-19, 
especially in the early stages when limited information is available 
about disease mechanisms and viral tissue tropism.[19] Autopsy 
specimens from individuals who died of COVID-19 serve 
as the primary resources for identifying the tissue tropism of 
SARS-CoV-2. These specimens can be analyzed using a range of 
techniques, including histological analysis, immunohistochemis-
try, in situ hybridization, electron microscopy, and multi-omics 
approaches, to investigate the distribution and abundance of the 
virus in various organs and tissues.[20,21] Such analyses offer a 
multi-dimensional perspective of COVID-19 and contribute to 
identifying distinct disease phenotypes. However, it is important 
to note that autopsies are typically performed on patients who 
succumbed to severe forms of COVID-19, and thus the findings 
may not fully represent all cases.

2.1.2. Biopsy specimens

Human tissues and cells derived from biopsies are crucial 
specimens for studying the tropism of pathogens within specific 
tissues and cells. These specimens are obtained through medical 
imaging-guided biopsy procedures, including puncture or endos-
copy, which enable the extraction of specific tissues or cells 
from patients. Biopsies collected from COVID-19 patients and 
human ex vivo tissue cultures can provide valuable insights into 
the cellular and molecular changes underlying the disease. Such 
findings can aid in the development of effective treatments and 
diagnostic methods. However, due to the challenges in obtain-
ing biopsies directly from COVID-19 patients, biopsies from 
donated organs or precancerous tissues can serve as reliable 
alternatives for research purposes.

2.1.3. Organoids

Organoid technology is an innovative biotechnological approach 
in which stem cells derived from embryonic or adult tissues are 
cultivated in a three-dimensional (3D) environment to recreate 
structures that closely mimic the architecture and function of 
specific organs or tissues.[22,23] The pluripotent differentiation 
potential of stem cells, combined with advancements in in vitro 
culture techniques, has enabled organoids to exhibit self-or-
ganization and self-renewal capabilities.[24] Two principal types 
of 3D-cultured organoid systems have been developed: those 
derived from human pluripotent stem cells and those generated 
from adult tissues.[25] Organoid technology has emerged as a 
vital research tool in translational medicine, cancer biology, 
and drug development. These models effectively replicate the 
pathophysiology of organs in disease states and were widely 
utilized in viral pathogenicity studies before the COVID-19 pan-
demic.[26] During the pandemic, organoid technology provided 
valuable research specimens and insights, helping to address many 
scientific challenges posed by SARS-CoV-2.[27] Nevertheless, it 
is important to acknowledge the limitations of organoid studies 
and interpret their results with caution.

Figure 1: Various types of specimens are used to study the tissue tropism of SARS-CoV-2. The figure was created with Biorender.com. We classify 
our specimens into four categories: (1) postmortem specimens; (2) human biopsy specimens; (3) organoid model specimens; and (4) animal model 
specimens. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; hACE2: human angiotensin-converting enzyme 2.
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2.1.4. Animal models

Animal models are experimental systems that utilize non-human 
species, such as rats or monkeys, to replicate the occurrence and 
progression of human diseases or specific biological processes. 
These models are widely used to assess the efficacy of vaccines 
and therapeutic drugs.[28] Due to their advantages—including 
short experimental durations, relatively low costs, and easy 
accessibility—animal models have become invaluable tools in 
investigating major human diseases.[28] They have been instru-
mental in the development of vaccines and therapeutics for 
SARS-CoV-2.[29,30] A diverse range of animal models has been 
used in SARS-CoV-2 research, including non-human primates 
(NHPs), genetically engineered mice, humanized mouse models,  
as well as Syrian hamsters, ferrets, poultry, and domestic 
animals.[30,31] While these models are designed to simulate 
virus-host interactions in humans, it is essential to acknowledge 
the inherent differences between species, which can introduce  
biases.

2.2. Methods for SARS-CoV-2 tropism research

Diverse techniques can be employed to detect the presence of 
SARS-CoV-2 in specific tissues, as detailed below (Figure  2). 
The presence of viral particles in specific specimens provides the 
strongest evidence of SARS-CoV-2’s ability to infect the tissue. 
Detecting viral proteins suggests potential viral activity, while the 
detection of viral subgenomic RNA alone offers weaker evidence 

of viral replication within the tissue. Therefore, we recommend 
that readers consider both the specimen sources and assay methods  
used in other studies when evaluating SARS-CoV-2 tropism.

2.2.1. Detection of viral particles or infectious virus

Transmission electron microscopy (TEM) is an imaging tech-
nique that enables direct visualization of viral particles in tissues 
at the nanoscale level, making it a valuable tool for detecting 
SARS-CoV-2 infection.[32] However, the technique have sig-
nificant limitations, including high costs, time-consuming 
procedures, and strict requirements for specimen preservation. 
Furthermore, accurately identifying viral particles at the subcel-
lular level can be technically challenging and demands a high 
level of operator expertise.[33]

An alternative method for detecting infectious viral particles 
involves virus isolation and quantification. Techniques such 
as plaque assays and the 50% tissue culture infectious dose 
(TCID50) assay are particularly effective when applied to fresh 
tissues or cultured cells.[34] The detection of live virus within 
a specific tissue or cell type offers compelling confirmation of 
viral tropism. Although virus isolation technology can precisely 
identify the presence and quantity of infectious virus, they are 
labor-intensive and reliant on high-quality samples, limiting 
their practicality for large-scale or multi-sample studies. Moreover,  
working with infectious virus requires access to high-level 
biosafety laboratories and strict specimen quality control to 
ensure the virus remains active throughout the testing process.[34]

Figure 2: Strategies for detecting the tissue tropism of SARS-CoV-2 can be categorized based on the type of detection into intact viral particles, viral 
proteins, and viral RNA. This figure is created in https://BioRender.com. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; RT-qPCR: 
reverse transcription quantitative polymerase chain reaction; ddPCR: droplet digital polymerase chain reaction; TCID50: 50% tissue culture infectious 
dose.
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2.2.2. Detection of viral proteins

Immunohistochemistry is a technique that employs antigen–anti-
body interactions to detect the expression of specific proteins 
in tissues or cells.[35] This method is commonly applied to for-
malin-fixed paraffin-embedded tissues, which are easily stored 
and widely used across various biomedical research fields.[36] 
Immunofluorescence, a complementary technique, employs 
fluorescently labeled antibodies as molecular probes to detect 
target proteins in tissues.[37] By using multiple specific antibodies,  
immunofluorescence enables the simultaneous detection of 
several markers within a single tissue section. Visualization of 
the target proteins is achieved through laser scanning confocal 
microscopy, which provides high-resolution images of labeled 
proteins.[38,39] Both immunohistochemistry and immunofluores-
cence techniques are applicable to various types of specimens 
and can detect the presence of viral proteins in tissues (such as 
the SARS-CoV-2 N or S proteins) as a signal of viral infection 
in the tissue.[40,41] However, the detection of viral proteins does 
not confirm effective infection, as it could result from abortive 
infections or contamination under specific scenarios.[42]

2.2.3. Detection of viral RNA

Reverse transcription quantitative real-time PCR (RT-qPCR) is a 
highly sensitive and specific technique that was widely employed 
during the early stages of the COVID-19 pandemic to detect 
SARS-CoV-2 RNA in patient specimens, such as nasopharyngeal 
swabs, saliva, and bronchoalveolar lavage fluid.[43] This method 
is also capable of detecting viral RNA in specific tissues or cells, 
aiding in identifying the virus’s tissue tropism and potential 
target organs. Another prominent detection method is digital 
droplet PCR (ddPCR), which uses water-in-oil emulsions to par-
tition background DNA or RNA into thousands of individual 
droplets.[44,45] Technologies for quantifying viral nucleic acids, 
such as RT-qPCR and ddPCR, have demonstrated substantial 
potential for SARS-CoV-2 detection and represent promising 
diagnostic tools for the identification and surveillance of various 
infectious diseases.[46,47]

RNA in situ hybridization (RNA ISH) and RNAscope tech-
nologies are robust tools for visualizing and localizing RNA in 
specific tissues.[48,49] These techniques use molecular probes that 
bind to specific RNA sequences in fixed, permeabilized tissues 
or cells. After hybridization, the RNA–probe complex emits a 
fluorescent signal, enabling optical microscopy to detect the 
target RNA’s presence and location.[50] Unlike PCR-based RNA 
detection methods, RNA ISH and RNAscope provide the added 
benefit of in situ tissue analysis, offering spatial context for 
RNA expression.[51]

However, the detection of viral RNA in specific tissues or 
cells does not necessarily confirm that the virus can complete 
processes such as genome replication, transcription, translation, 
virion assembly, and release within those tissues or cells. Positive 
viral RNA signals may result from abortive viral infections or 
specimen contamination. Probes targeting the negative-strand 
viral genome RNA are recommended to improve reliability, 
and combining RNA ISH or RNAscope with other detection 
technologies can help minimize false-positive results.

2.2.4. High-throughput sequencing-based methods

High-throughput sequencing and its derivative technologies ena-
ble rapid and efficient large-scale sequencing of DNA or RNA 

samples within a short timeframe.[52] Compared to bulk sequenc-
ing, single-cell sequencing and spatial single-cell sequencing 
provide single-cell and spatial resolution, respectively, offering 
unprecedented insights and broader perspectives.[53] By aligning 
sequencing data from specific tissues or cells to the SARS-CoV-2 
reference genome, researchers can quantify viral RNA read 
counts to confirm its presence in a specimen.[54]

3. Tissue and cell tropism of SARS-CoV-2
Substantial evidence indicates that SARS-CoV-2 exhibits tro-
pism for multiple organs and cell types.[55–74] In addition to the 
respiratory tract, vital organs such as the stomach, heart, and 
kidneys are at risk of viral infection. This study evaluates the 
susceptibility of various tissues to SARS-CoV-2 infection at both 
the tissue and cellular levels; the findings emphasize the necessity 
of robust evidence to confirm viral tissue tropism (Figure  3;  
Figure 4; Supplementary Table S1, http://links.lww.com/IDI/A62).  
Based on current evidence, we categorize SARS-CoV-2 target tis-
sues or cells into three tiers: definitive infection (supported by ≥2 
concordant studies demonstrating intact viral particles), proba-
ble infection (consistent detection of viral proteins without viral 
particles across studies), and unconfirmed infection (limited to 
viral RNA detection or where evidence remains contradictory).

3.1. Respiratory system

The respiratory system, comprising the trachea, airways, 
and distal alveoli, serves as the primary site for gas exchange 
between the internal and external environments.[75] It is a 
critical component of the human respiratory system, which is 
divided into the upper and lower respiratory tracts. The internal 

Figure 3: Overview of the tissue tropism of SARS-CoV-2 for various tis-
sues. Definitive infection (√): viral particles or live virus have been detected 
in tissues from at least 2 studies without contradictory evidence. Probable 
infection (*): viral proteins have been detected in tissues from COVID-19 
patients’ specimens. Unconfirmed infection (?): Only viral RNA has been 
detected in tissues, or there is a lack of evidence regarding whether the 
virus can infect that tissue. This figure is created in https://BioRender.
com. SARS-CoV-2: severe acute respiratory syndrome coronavirus 2.
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microenvironment of the respiratory tract is highly complex, 
containing various specialized cell types, such as ciliated cells, 
macrophages, and endothelial cells. These cells are essential for 
maintaining normal respiratory function, clearing foreign parti-
cles, and defending against pathogenic infections.[76]

SARS-CoV-2 primarily targets the respiratory system, leading 
to clinical symptoms such as coughing and difficulty breathing. 
In severe cases, infection can progress to pneumonia or respira-
tory failure.[11] ACE2 is widely expressed across various cell 
types in the trachea, airways, and alveoli.[77–79] This expression 
pattern underscores the broad potential for SARS-CoV-2 infec-
tion in the respiratory tract.

Research based on autopsies and organoid models has shown 
that the respiratory tract, including the trachea, airways, and 
lungs, is the primary target of SARS-CoV-2 infection. Ciliated 

cells and type II alveolar cells (AT2 cells) are the main target 
cells.[80–92] The detection of viral particles in these tissues and 
cells suggests that the virus can replicate and spread extensively 
within the respiratory system.[85,86,88] Additionally, other cell 
types, including secretory cells, squamous cells, goblet cells, 
basal cells in the upper airways, and alveolar macrophages in 
the lungs, may also become infected.[85,93] This is supported by 
the presence of viral proteins and subgenomic RNA in these 
cells, as observed in studies using autopsy and human-derived 
specimens.[41,83,94] While goblet cells (also known as club cells) 
have the potential to be infected by SARS-CoV-2, infections in 
these cells are rarely observed. This is likely due to the absence 
of viral replication components in goblet cells, which highlights 
the virus’s preferential cell tropism.[95] Single-cell sequenc-
ing data from samples such as nasopharyngeal swabs and 

Figure 4: Overview of the tropism of SARS-CoV-2 for various cells. (A–I) Cell tropism of SARS-CoV-2 for different systems or tissues. Definitive infection 
(√): viral particles or live virus have been detected in cells from at least 2 studies without contradictory evidence. Probable infection (*): viral proteins 
have been detected in cells from COVID-19 patients’ specimens. Unconfirmed infection (?): Only viral RNA has been detected in cells, or there is a lack 
of evidence regarding whether the virus can infect that tissue. This figure is created in https://BioRender.com.
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bronchoalveolar lavage fluid from COVID-19 patients further 
confirm that SARS-CoV-2 can infect ciliated cells, goblet cells, 
basal cells, and squamous cells.[54,96,97] Collectively, these studies 
demonstrate that SARS-CoV-2 exhibits a broad tropism for the 
respiratory system, which serves as the primary gateway for 
viral invasion and dissemination in the body.

3.2. Digestive system

The human digestive system comprises the digestive tract 
and digestive glands. Some individuals infected with SARS-
CoV-2 may present with gastrointestinal symptoms, including 
anorexia, diarrhea, vomiting, and abdominal pain.[98] Addi-
tionally, viral RNA has been detected in the feces of certain 
patients, suggesting the potential for fecal-oral transmission of 
SARS-CoV-2.[99–101] Interestingly, the expression levels of ACE2 
in intestinal tissues are higher than those in the respiratory 
tract.[77,102]

Numerous studies have confirmed the tropism of SARS-
CoV-2 for the digestive system. The presence of SARS-CoV-2 
viral particles and proteins in human tissue specimens and 
intestinal organoid models derived from COVID-19 patients 
has been documented.[100,103–109] Furthermore, infectious viral 
particles have been successfully isolated from the feces of some 
patients.[107] Enterocytes have been identified as the primary 
target cells in the gastrointestinal tract, with multiple studies 
reporting the presence of viral particles or proteins in these 
cells.[100,101,103,104,107–109] Moreover, Giobbe et al. reported that 
gastric cells in human gastric organoid models can be infected 
by SARS-CoV-2, although in vivo evidence is lacking.[105] Ani-
mal model studies conducted by Jiao et al. corroborated the 
findings from human findings, identifying infection in the 
digestive tract and detecting viral particles and RNA in a 
primate model.[110] Investigations into bat organs have further 
revealed that SARS-CoV-2 can infect the intestinal tissues of 
bats.[107] Notably, bat intestinal tissues exhibit higher baseline 
expression of antiviral genes compared to human intestinal 
tissues, facilitating a faster and more robust innate immune 
response. This may contribute to the asymptomatic carrier 
state of the virus in bats.[111]

The liver, a vital digestive and endocrine organ, plays a cen-
tral role in numerous physiological processes and is essential 
for maintaining homeostasis.[112] Liver injury is a common 
complication during SARS-CoV-2 infection, typically indicated 
by elevated levels of aspartate aminotransferase and gamma- 
glutamyl transferase.[113] These findings suggest that the liver can 
be directly affected by SARS-CoV-2 infection. Autopsy findings 
from COVID-19 patients have consistently shown the presence 
of viral particles, proteins, or RNA in liver tissues, supporting 
the liver’s susceptibility to SARS-CoV-2.[40,93,114–117] Liver orga-
noid studies have further confirmed the presence of SARS-CoV-2 
viral particles in infected human liver organoids, reinforcing the 
notion that the liver is a target organ for the virus.[118] Hepato-
cytes, Kupffer cells, and endothelial cells have been identified as 
potential targets of SARS-CoV-2 infection. Several studies have 
provided compelling evidence of viral proteins in hepatocytes 
and Kupffer cells, underscoring their vulnerability.[40,114,115] Asia-
loglycoprotein receptor 1 has been identified as a key receptor 
for mediating viral entry into hepatocytes.[119] The detection 
of viral proteins in liver endothelial cells further supports their 
involvement in the infection process.[40,120]

Autopsy studies and investigations using human salivary gland 
organoids have also provided evidence of SARS-CoV-2 infection 
in the salivary glands. This includes the detection of infectious 
viral particles, viral proteins, and viral RNA.[121–123] Acinar 
cells have been identified as the primary targets within salivary 
glands infected by SARS-CoV-2.[121]

3.3. Central nervous system

During SARS-CoV-2 infection, patients may experience a 
range of neurological symptoms, including reduced sense of 
smell and taste, dizziness, headaches, altered consciousness, 
and ataxia.[124] In severe cases, concurrent neurodegeneration, 
cerebral edema, and even encephalitis have been observed. The 
detection of SARS-CoV-2 in cerebrospinal fluid and brain tissue 
specimens from certain individuals suggests the potential for 
viral invasion of the nervous system.[116,125] Traditionally con-
sidered immune-privileged, the central nervous system (CNS) 
has now been shown to exhibit immune activity.[126] The CNS 
is protected by several physical barriers, including the meninges, 
the interface between the nasal epithelium and the olfactory 
bulb, the blood-cerebrospinal fluid barrier (BCSFB), and the 
blood-brain barrier (BBB).[127] These structures, together with 
resident immune cells, play a crucial role in preventing pathogen 
invasion.

Bauer et al. proposed a concise definition of neuroinvasiveness, 
referring to the ability of a virus to breach these physical barriers 
and access specific neural tissues or organs.[128] This concept is 
essential for evaluating whether SARS-CoV-2 can be classified as 
a neurotropic virus. One study demonstrated that non-infectious 
SARS-CoV-2 models were able to breach the blood-brain barrier 
in mouse models, leading to CNS involvement.[129] Research 
using human brain organoid and mouse models has further 
revealed viral infection in brain capillary endothelial-like cells, 
supporting the notion that SARS-CoV-2 has the ability to cross 
physical barriers.[130,131] Another potential pathway for SARS-
CoV-2 entry into the CNS is through the respiratory tract, with 
possible infection of the olfactory bulb tissue.[128] While Khan 
et al. reported not infection of the olfactory bulb tissue, their 
findings did confirm viral infection in supporting cells of the 
olfactory epithelium.[90] This suggests that the virus may not 
traverse the olfactory epithelium to enter the CNS. By contrast, 
several studies have demonstrated SARS-CoV-2 infection in 
the olfactory bulb, indicating that the olfactory nerve could 
serve as a potential route for viral invasion into the nervous 
system.[132–134]

Studies utilizing human brain organoids provide com-
pelling evidence of SARS-CoV-2 infectivity in CNS tissues 
and cells following viral entry.[135–143] In both organoid and 
animal models, viral particles, proteins, and RNA have been 
detected in neurons, astrocytes, and choroid plexus epithelial 
cells.[133,135–137,139–142,144] Additional findings show viral RNA 
or proteins in glial cells, microglia, and neural progenitor 
cells.[133,134,138,139,142] ACE2 expression in neurons, astrocytes, 
and choroid plexus epithelial cells provides a molecular basis 
for SARS-CoV-2 infection in these cell types.[145,146] Postmor-
tem studies of COVID-19 patients have revealed SARS-CoV-2 
RNA in brain tissue, including the optic and olfactory nerves 
and the choroid plexus.[93,116,147–150] However, viral proteins 
were rarely detected,[123,151–153] and only one study provided 
evidence of SARS-CoV-2 viral particle detection.[115] In line with 
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organoid findings, astrocytes and neurons were also found to 
be infected in autopsy specimens.[115,151] Interestingly, several 
studies have reported infection of cerebral blood vessels and vas-
cular endothelial cells in the brain, with viral RNA or proteins 
detected in these cell types.[115,148,154,155]

Overall, CNS infection by SARS-CoV-2 appears to be an 
opportunistic event. Although the virus shows the potential 
to breach physical barriers and invade neural tissues, findings 
across studies have been inconsistent, suggesting that such events 
may be relatively rare.[90,156–158] Moreover, the detection of viral 
RNA in brain specimens alone is insufficient to confirm CNS 
infection. It is possible that systemic inflammation associated with 
COVID-19 compromises the integrity of the BBB or BCSFB, 
allowing viral RNA to enter the CNS without direct infection 
of neural tissues.[159]

3.4. Cardiovascular system

The cardiovascular system, comprising the heart and blood 
vessels, is recognized as a potential target for SARS-CoV-2 
infection. COVID-19–associated symptoms such as arrhythmias 
and acute myocardial injury have been linked to poorer prog-
noses in affected individuals.[160] The heart, a complex organ 
with four chambers, is composed of diverse cell types, including 
cardiomyocytes, fibroblasts, endothelial cells, pericytes, smooth 
muscle cells, immune cells, adipocytes, and neural cells.[161] 
The high expression of ACE2 in cardiac tissue suggests that 
the heart is particularly susceptible to SARS-CoV-2, identifying 
it as a potential target organ.[162] Viral particles, proteins, and 
RNA have been detected in the hearts of COVID-19 patients 
through autopsies and tissue specimens.[40,92,93,115,117,147,163–165] 
These findings are further substantiated by studies using human 
heart organoid models and animal models, which confirm that 
the heart can indeed be infected by SARS-CoV-2.[166–169] Among 
the cardiac cell types, cardiomyocytes have been identified as 
potential target cells for viral infection. Several studies have 
reported the presence of viral particles or proteins within cardi-
omyocytes,[115,163,164,166–168,170–172] as well as in pericytes, where 
viral proteins have also been detected.[171,173] These observations 
suggest that SARS-CoV-2 can directly infect and damage specific 
cell types in the heart.

Endothelial cells, which form the inner lining of blood vessels, 
are essential to cardiovascular function and have been identified 
as significant targets for SARS-CoV-2 infection.[174–176] Multiple 
studies have confirmed the virus’s ability to infect blood ves-
sels.[174,177] Recent research indicates that SARS-CoV-2 infection 
of endothelial cells triggers inflammatory responses, a process 
that plays a key role in the pathogenesis of COVID-19.[41,165]

Given the virus’s pronounced tropism for endothelial cells, 
it is plausible that such cells across various organs may also 
become infected. This widespread endothelial involvement may 
contribute to multi-organ complications beyond the cardiovas-
cular system. The infection of endothelial cells underscores the 
systemic nature of SARS-CoV-2 and highlights the importance 
of further research into its role in organ-specific complications.

In conclusion, strong evidence supports SARS-CoV-2’s 
tropism for the human cardiovascular system. Recognizing the 
complex relationship between COVID-19 and cardiovascular 
health can help healthcare professionals develop more targeted 
interventions and treatment strategies. Ultimately, such insights 
are crucial for improving patient outcomes and mitigating the 

virus’s impact on cardiovascular function during and beyond 
the course of the pandemic.

3.5. Urinary system

The urinary system, comprising the kidneys, bladder, and ureters, 
plays a central role in urine production and excretion. Among 
patients with COVID-19, acute kidney injury has emerged as a 
common complication, highlighting the susceptibility of the kid-
neys to SARS-CoV-2 infection and its associated damage.[178,179] 
The high expression of ACE2 in renal tissue further supports 
this vulnerability.[180]

Evidence from autopsies, biopsies, and organoid models has 
confirmed the presence of viral particles, proteins, or RNA in 
kidneys affected by SARS-CoV-2.[40,93,115,117,150,181,182] Notably, 
Sun et al. isolated infectious viral particles from the urine of 
COVID-19 patients, raising the possibility of SARS-CoV-2 
transmission via urine.[183] Interestingly, a diabetic environment 
appears to exacerbate the kidney’s susceptibility to SARS-CoV-2, 
possibly due to altered energy metabolism and increased ACE2 
expression.[184] However, evidence regarding viral infection in the 
ureter and bladder remains limited. In most cases, renal tubular 
epithelial cells within the renal parenchyma are identified as the 
primary targets of viral infection.[93,115,185–187] In addition, viral 
RNA or proteins have been detected in other renal cell types, 
such as renal cells and podocytes.[185] In conclusion, a growing 
body of research supports the tropism of SARS-CoV-2 for the 
kidneys, with viral infection potentially contributing to renal 
fibrosis and severe kidney injury.[185]

3.6. Reproductive system

Our current understanding of SARS-CoV-2 infection in repro-
ductive organs and its clinical implications remains limited. 
Few COVID-19 patients have reported symptoms related to 
the reproductive system.[188] While ACE2 expression has been 
observed in the testes, ovaries, uterus, and vagina, it is not signifi-
cantly expressed in the female reproductive system.[189,190]

Evidence suggests the possibility of SARS-CoV-2 invasion of 
reproductive tissues. Yao et al. reported the presence of viral 
RNA and proteins in the blood-testis barrier (BTB) in autopsy 
specimens from COVID-19 patients.[91] Two additional studies 
identified viral particles in the testes, with spermatogonial 
cells as the potential targets of infection.[117,191] Other studies 
have detected viral RNA or proteins in the testes, ovaries, 
and uterus.[91,93,117] Li et al. demonstrated that SARS-CoV-2 
infection in hamsters led to acute testicular damage, although 
this damage was prevented by vaccination.[192] Peirouvi et al. 
provided evidence that SARS-CoV-2 can impair BTB function 
by reducing the expression of junctional proteins and increas-
ing the expression of inflammatory factors.[193] This disruption 
may facilitate viral entry into the testis via the vasculature. 
While these findings support the potential for SARS-CoV-2 
infection in reproductive organs, such infection appears to be a 
relatively rare clinical event rather than a typical manifestation 
of COVID-19.

The possibility of vertical transmission from mother to fetus 
remains uncertain. Limited and often conflicting evidence has led 
to ongoing debate.[194–198] Current research does not conclusively 
support SARS-CoV-2 infection of the placenta.[120,196,198,199] Fur-
ther investigation is needed to assess the tropism of SARS-CoV-2 
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for reproductive tissues and to inform appropriate clinical treat-
ment strategies.

3.7. Endocrine system

The organs of the endocrine system regulate various physio-
logical functions, primarily through hormone secretion. Several 
endocrine organs—including the pancreas, salivary glands, 
thyroid, and thymus—are considered potential targets for SARS-
CoV-2 infection.[147,200] Research has shown the presence of viral 
particles, proteins, or RNA in the pancreas.[148,201–204] A notably 
high frequency of infection has been observed in various pan-
creatic cell types, including islet alpha cells, beta cells, and other 
endocrine cells.[201–205] COVID-19 has also been associated with 
thyroid dysfunction. Studies by Poma et al. and Macedo et al. 
analyzed thyroid specimens from deceased COVID-19 patients 
and reported direct infection of the thyroid by SARS-CoV-2, 
with viral RNA localized in thyroid tissue.[206,207] Similarly, 
Rosichini et al. demonstrated infection of human primary 
thymic epithelial cells, suggesting that the thyroid and thymus 
may be targeted by SARS-CoV-2.[208] Despite these findings, the 
infection of endocrine organs by SARS-CoV-2 appears to be 
relatively rare.

3.8. Immune system

The potential for SARS-CoV-2 to infect immune cells and inter-
fere with normal immune function remains a compelling area 
of investigation. As the respiratory system is the virus’s primary 
point of entry, immune cells located within respiratory tissues 
are at risk of infection. Using single-cell sequencing, Ren et al. 
and Ziegler et al. identified viral RNA in various immune cell 
types, such as T cells, B cells, NK cells, macrophages, neutrophils, 
and plasma cells.[54,97] Further, multiple studies have confirmed 
the presence of viral antigens in alveolar macrophages, further 
supporting the idea that immune cells in the respiratory tract 
can be directly targeted by SARS-CoV-2.[80,91,115,120,209]

The spleen and lymph nodes, as peripheral lymphoid 
organs, are key sites for immune responses and are primary 
reservoirs for immune cells. SARS-CoV-2 infection of these 
organs has been demonstrated, with viral RNA or antigens 
detected in both tissues.[40,91,93,117,181] Certain immune cells 
within the spleen and lymph nodes also appear susceptible to 
infection.[40,91,93] These observations, derived from postmor-
tem analyses, suggest that such infections are more common in 
severe cases of COVID-19.

Recent findings have also indicated the potential for SARS-
CoV-2 to infect circulating lymphocytes in the blood, including 
monocyte macrophages, T cells, and B cells. Several studies 
have reported the presence of viral RNA or antigens in these 
cell types.[210,211] Notably, a study by Shen et al. identified infec-
tious virus within T cells isolated from the peripheral blood of 
COVID-19 patients.[212] These findings suggest that circulating 
immune cells can be directly infected by SARS-CoV-2, highlight-
ing the virus’s potential to interfere with immune function and 
contribute to disease severity.

3.9. Other tissues and organs

SARS-CoV-2 has demonstrated the ability to infect various 
tissues and organs beyond the respiratory system, including 

adipose tissue and the eye. Several studies have shown that the 
virus can invade adipose cells, with evidence of viral particles 
or RNA detected in adipose tissue specimens.[213–215] Addition-
ally, the virus has been detected in the eye, particularly in the 
cornea, retina, and vitreous body.[216–221] These findings raise 
the possibility that ocular routes may facilitate viral transmis-
sion. However, some studies have reported negative results for 
SARS-CoV-2 infection in the cornea,[222,223] suggesting that such 
infections are rare, and the likelihood of viral transmission 
through corneal transplants from deceased COVID-19 patients 
remains very low.

3.10. ACE2 and SARS-CoV-2 tropism

The ACE2 receptor serves as the decisive and indispensable 
factor mediating SARS-CoV-2 entry into host cells.[224,225] As 
a result, ACE2 expression levels in specific tissues or cells are 
strongly associated with viral tropism.[226] Successful viral 
invasion and replication typically require two essential steps: 
(1) Access of the virus to the target tissue through specific 
mechanisms, and (2) sufficient expression of viral receptors—
particularly ACE2—within the target tissue. Multiple studies 
have systematically analyzed ACE2 expression profiles across 
various human tissues and cell types. Significant ACE2 expres-
sion has been identified in the intestinal epithelium, renal 
tubules, gallbladder, myocardium, testicular tissue, placenta, 
vascular endothelium, and hepatocytes,[77] with especially high 
levels observed in the small intestine, testes, kidneys, heart, 
thyroid, and adipose tissues.[180] These findings align with our 
investigation, as most of these tissues have been confirmed as 
targets for SARS-CoV-2 infection. Furthermore, a meta-anal-
ysis found that ACE2 levels were elevated in the respiratory 
epithelial cells of current and former smokers compared to non- 
smokers.[227] Subsequent studies have corroborated that this ACE2 
upregulation enhances host cell susceptibility to SARS-CoV-2  
infection.[228]

4. SARS-CoV-2 variants and tropism
Since the onset of the pandemic, the continual emergence of 
SARS-CoV-2 variants has posed an ongoing challenge for global 
health organizations. To date, the World Health Organization 
(WHO) has designated five Variants of Concern (VOCs): Alpha 
(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and 
Omicron (B.1.1.529).[229,230] Although the pandemic has been 
officially declared over, descendant lineages such as XBB, JN.1, 
and XEC continue to circulate in certain regions.[231] Emerging 
research indicates that JN.1, KP.3.1.1, and XEC variants possess 
enhanced abilities to evade humoral immunity and escape from 
receptor-binding domain-targeting antibodies.[231,232] However, 
further investigation is needed to determine whether these vari-
ants exhibit altered host tropism.

Current evidence suggests that SARS-CoV-2 evolution has 
influenced viral tropism, with Omicron variants exhibiting 
reduced pulmonary tropism compared to ancestral strains and 
earlier variants such as Alpha and Delta.[233] This phenotypic 
shift appears to be associated with two key factors: (1) Omi-
cron exhibits reduced replication efficiency in pulmonary cells 
compared to earlier variants,[234,235] and (2) The virus exhibits 
prolonged persistence in nasal and sinus mucosal tissues, which 
may limit its penetration into the lower airways and reduce the 
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risk of pulmonary inflammation.[236] A German autopsy study 
reported significantly higher nasal viral loads in Omicron cases 
compared to non-VOC lineages. However, no significant differences 
in viral loads were observed among different variants in other 
organs, including the lungs, blood, heart, liver, kidneys, and 
brain.[237] Currently, limited data are available regarding the tro-
pism of different variants for non-respiratory tissues and organs. 
More comprehensive studies are required to fully characterize 
the tissue-specific tropism of various SARS-CoV-2 variants.

5. Conclusion
COVID-19, caused by SARS-CoV-2, continues to represent a 
major global health concern. With its potential for multi-organ 
involvement, the disease poses increased risks to vulnerable 
populations, particularly those with pre-existing conditions. 
This situation underscores the urgent need for the development 
of more effective vaccines and therapeutic strategies, especially 
in light of going emergence of new variants. Although the res-
piratory system is the primary target for the virus, SARS-CoV-2 
exhibits a complex tropism affecting various tissue and cell 
types throughout the human body. Further research is essential 
to deepen our understanding of the specific mechanisms under-
lying the multisystem effects of SARS-CoV-2.
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